Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.16.21260627

ABSTRACT

A number of recent retrospective studies have demonstrated that SARS-CoV-2 RNA concentrations in wastewater are associated with COVID-19 cases in the corresponding sewersheds. Implementing high-resolution, prospective efforts across multiple plants depends on sensitive measurements that are representative of COVID-19 cases, scalable for high throughput analysis, and comparable across laboratories. We conducted a prospective study across eight publicly owned treatment works (POTWs). A focus on SARS-CoV-2 RNA in solids enabled us to scale-up our measurements with a commercial lab partner. Samples were collected daily and results were posted to a website within 24-hours. SARS-CoV-2 RNA in daily samples correlated to incidence COVID-19 cases in the sewersheds; a 1 log 10 increase in SARS-CoV-2 RNA in settled solids corresponds to a 0.58 log 10 (4X) increase in sewershed incidence rate. SARS-CoV-2 RNA signals measured with the commercial laboratory partner were comparable across plants and to measurements conducted in a university laboratory when normalized by pepper mild mottle virus PMMoV RNA. Results suggest that SARS-CoV-2 RNA should be detectable in settled solids for COVID-19 incidence rates > 1/100,000 (range 0.8 - 2.3 cases per 100,000). These sensitive, representative, scalable, and comparable methods will be valuable for future efforts to scale-up wastewater-based epidemiology. Importance Access to reliable, rapid monitoring data is critical to guide response to an infectious disease outbreak. For pathogens that are shed in feces or urine, monitoring wastewater can provide a cost-effective snapshot of transmission in an entire community via a single sample. In order for a method to be useful for ongoing COVID-19 monitoring, it should be sensitive for detection of low concentrations of SARS-CoV-2, representative of incidence rates in the community, scalable to generate data quickly, and comparable across laboratories. This paper presents a method utilizing wastewater solids to meet these goals, producing measurements of SARS-CoV-2 RNA strongly associated with COVID-19 cases in the sewershed of a publicly owned treatment work. Results, provided within 24 hrs, can be used to detect incidence rates as low as approximately 1/100,000 cases and can be normalized for comparison across locations generating data using different methods.


Subject(s)
COVID-19 , Communicable Diseases
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.29.21255961

ABSTRACT

The effective reproductive number, Re, is a critical indicator to monitor disease dynamics, inform regional and national policies, and estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To date, Re estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths. Here we show that the dynamics of SARS-CoV-2 RNA in wastewater can be used to estimate Re in near real-time, independent of clinical data and without associated biases stemming from clinical testing and reporting strategies. The method to estimate Re from wastewater is robust and applicable to data from different countries and wastewater matrices. The resulting estimates are as similar to the Re estimates from case report data as Re estimates based on observed cases, hospitalizations, and deaths are among each other. We further provide details on the effect of sampling frequency and the shedding load distribution on the ability to infer Re. To our knowledge, this is the first time Re has been estimated from wastewater. This method provides a low cost, rapid, and independent way to inform SARS-CoV-2 monitoring during the ongoing pandemic and is applicable to future wastewater-based epidemiology targeting other pathogens.


Subject(s)
Death
SELECTION OF CITATIONS
SEARCH DETAIL